
Australian Government

Department of Defence
Defence Science and

Technology Organisation

Developing an Evaluation Method for Middleware-Based
Software Architectures of Airborne Mission Systems

Kate Foster1, Jenny Liu2 and Adam lannos1

1
 Air Operations Division, Defence Science and Technology Organisation

2 National Information and Communication Technology Australia (NICTA)

DSTO-TR-2204

ABSTRACT

The Australian Defence Force (ADF) is acquiring airborne mission systems that incorporate
component-based and distributed computing systems. Such systems are built on middleware
technologies. As DSTO is responsible for technically evaluating ADF acquisitions, one area of
research in the Air Operations Division is the evaluation of middleware-based software
architectures. In order to conduct this research, DSTO and NICTA have collaborated to extend
NICTA's middleware evaluation method and apply it to the airborne mission systems domain.

RELEASE LIMITATION

Approved for public release

20090605270

Published by

Air Operations Division
DSTO Defence Science and Technology Organisation
506 Lorimer Street
Fishermans Bend, Victoria 3207 Australia

Telephone: (03) 9626 7000
Fax: (03) 9626 7999

© Commonwealth of Australia 2008
AR-014-310
July 2007

APPROVED FOR PUBLIC RELEASE

Developing an Evaluation Method for Middleware-
Based Software Architectures of Airborne Mission

Systems

Executive Summary

The Australian Defence Force (ADF) is acquiring airborne mission systems (AMS) that
incorporate component-based and distributed computing systems in order to enhance its
Network Centric Warfare (NCW) capability. These systems are built on middleware, which
is a class of software infrastructure technologies that use high-level abstractions to simplify
the construction of distributed systems. Middleware architectures play a crucial role in the
overall quality of distributed applications.

The Defence Science & Technology Organisation (DSTO) is responsible for evaluating
technical proposals for aircraft systems for the ADF. It would be useful to have a method
that evaluators of middleware-based systems could use to rigorously assess technologies
and determine their fitness for purpose. This would benefit the ADF by uncovering
potential design and implementation problems in systems and platforms that incorporate
middleware.

The Air Operations Division (AOD) branch of DSTO has, therefore, developed a research
program to investigate the evaluation of software architectures of middleware-based
systems. In order to perform evaluations as efficiently and effectively as possible, AMS
needs to develop a capability in evaluating component-based and distributed software
architectures. This includes codification of the evaluation process and reuse of evaluation
knowledge from one project to another. Such a capability would promote organisational
learning and lead to effective and efficient evaluation of projects.

Researchers from NICTA's Empirical Software Engineering program have developed a
structured approach to address the evaluation of middleware architectures, called MEMS
(Method for Evaluating Middleware architectures). MEMS is a systematic and rigorous
approach for evaluating the various attributes of the architecture of middleware platforms,
components and the interfaces for integration with different software applications. NICTA
and DSTO have collaborated to extend MEMS to support the evaluation of airborne
mission systems that incorporate component-based and distributed technologies. This work
was conducted under the AOD Long Range Research (LRR) Task 06/075.

in

The MEMS extension was applied to the Hybrid Mission System Testbed (MST) at AOD
by outlining an evaluation plan. The Hybrid MST provides infrastructure that enables the
investigation and demonstration of distributed computing technologies and concepts in
modern airborne mission systems. The Hybrid MST is not a simulation of an airborne
mission system; rather it incorporates components similar to those found in such systems.

Further research will involve:

• the development of a detailed evaluation plan for the Hybrid MST

• instrumentation and configuration of the Hybrid MST to enable the evaluation plan
to be implemented

• conducting experiments for each of the scenarios in the evaluation plan; and

• analysing the results obtained from these experiments.

The evaluation results and the patterns used in the Hybrid MST may be documented using
an architecture knowledge management tool also developed by NICTA.

This collaboration has resulted in an improved capability at DSTO to reliably and
efficiently evaluate architecture risk during system acquisition. The project also resulted in
an enhancement of NICTA's research by providing an industrial environment for
technology trial, usage and improvement.

IV

Authors

Kate Foster
Air Operations Division

Dr Kate Foster is a Research Engineer with DSTO's Air Operatio7is
Division. Her current work involves support to the Airborne Early
Warning & Control acquisition, research into the evaluation of
component-based and distributed software architectures, and
participation in the DSTO Net Warrior initiative to experimentally
investigate aspects of net centricity. Kate obtained a Bachelor of
Engineering (Electrical and Electronics) (Hons) and a PhD from
Swinburne University in Melbourne, Australia.

Jenny Liu
National Information and Communication
Technology Australia (NICTA)

Dr. Yan Liu obtained Iwr PhD degree from University of Sydney in
2004. She is a senior researcher in NICTA ATP laboratory, working
under Managing Complexity Theme. Her current research involves
software architecture evaluation and adaptive middleware. She
published her research on software engineering and middleware
systems on international journals and conferences including IEEE
TSE, JSS, ICSE, OOPSLA, WICSA and CBSE. Her research
interests include software architecture, component- and middleware
based systems, software performance prediction, and autonomic
computing.

Adam Iannos
Air Operations Division

Adam Iannos obtained a Bachelor of Engineering (Computer
Systems) (Hons) from the University of Adelaide, Australia in 2001.
In 2002, he joined the Air Operations Division at DSTO as a
Professional Officer and his work involves support to the Airborne
Early Warning & Control acquisition, New Air Combat Capability
acquisition, distributed computing design and analysis, and
investigating aspects of net centricity.

Contents

Acknowledgements VIII

Abbreviations IX

1. INTRODUCTION 1

2. MIDDLEWARE AND SYSTEM QUALITY 3

3. SOFTWARE ARCHITECTURE EVALUATION 4
3.1 Scenario-Based Architecture Evaluation Methods 4
3.2 Evaluation of Middleware 5
3.3 Use of Scenarios for Architecture Evaluation 5

4. MEMS 7

5. EXTENDING MEMS 10
5.1 Integrating Design Patterns 10
5.2 An Example 12

6. HYBRID MISSION SYSTEM TESTBED 14
6.1 Overview 14
6.2 Components used for Evaluation 18

6.2.1 Overview 18
6.2.2 Test Track Generator 19
6.2.3 Track Manager 21
6.2.4 Track Monitor 26

7. EVALUATING THE HYBRID MISSION SYSTEM TESTBED USING MEMS.. 27
7.1 Mapping MEMS Artefacts, Roles and Tasks 27
7.2 Identifying Important Architectural Patterns for Evaluation 28
7.3 Outline of the Evaluation Plan 30

8. SUMMARY 31

9. REFERENCES 32

VII

Acknowledgements

Some of the information presented in this report was sourced from in-house documentation
prepared by Brad Tobin, Peter Temple, Trent O'Connor and Robert O'Dowd of DSTO and
discussions with Derek Dominish of Boeing Australia.

vm

Abbreviations

ACE ADAPTIVE Communication Environment

ADAPTIVE A Dynamically Assembled Protocol Transformation, Integration,
and evaluation Environment

ADF Australian Defence Force

ALMA Architecture Level Modifiability Analysis

AMS Airborne Mission Systems

AOD Air Operations Division

API Application Programming Interface

AT AM Architecture Tradeoff Analysis Method

CCM CORBA Component Model

CORBA Common Object Request Broker Architecture

COTS Commercial-Off-The-Shelf

DOC Distributed Object Computing

DSTO Defence Science & Technology Organisation

GUI Graphical User Interface

IDL Interface Description Language

LRR Long Range Research

MEMS Method for Evaluating Middleware architectures

MST Mission System Testbed

NCW Network Centric Warfare

NICTA National Information and Communication Technology Australia

OCC Optimistic Concurrency Control

OMG Object Management Group

OO Object Oriented

ORB Object Request Broker

RFP Request for Proposals

SAAM Software Architecture Analysis Method

SAF Software Architecture Framework

SEI Software Engineering Institute

SRL System Readiness Level

STAGE Stimulation Toolkit and Generation Environment

STL Standard Template Library

TAO The ACE ORB

TDF Tactical Display Framework

TRL Technical Readiness Level

WSM Weighted Scoring Method

IX

DSTO-TR-2204

1. Introduction

Modern weapon systems continue to increase in complexity for two main reasons. The first is
due to the focus on enabling joint and multinational operations by enhancing the Network
Centric Warfare (NCW) capability [DFW 2004] of the Australian Defence Force (ADF). The
second is due to the necessity, for the corporate sector, to continue to innovate in the field of
weapons [Paravisini 2003]. Furthermore, the growth in the complexity of software has far
outstripped the increases in the complexity of hardware components and their connectivity.
For example, in the 1960s less than 10 percent of the functionality of the F-4 fighter was based
on software; in the F/A-22 it is more than 80 percent [Wait 2006].

To manage software complexity, the Component-Based Software Development paradigm has
been developed, under which software systems are constructed from existing or newly
created components that may be distributed over a network. The integration of these systems
has also become more challenging, particularly for real-time and embedded distributed
systems. Many factors (e.g. network latency, predictability, concurrency, scalability and
partial failures) need to be taken into account when designing such systems [Voelter et al.
2005].

One of the critical factors for the success of system integration is an appropriate architectural
design of the system [Clements et al. 2001]. This aims to ensure that the system satisfies its key
behavioural requirements and quality attributes, such as real-time performance, reliability,
security and maintainability.

Since the mid 1990s, developers of complex systems have begun to recognise the need for
improved architecture modelling and analysis approaches that enable the process of building
systems to be more predictable. Integrating complex systems can be difficult due to emerging
properties (e.g. scheduling, fault tolerance and security). System lifecycles are becoming
evolutionary as components of systems are upgraded to avoid obsolescence. However, the
impact on the system as a whole needs to be considered before upgrades are commenced
[Allen etal. 2002].

In parallel with the increasing complexity of weapon systems, software intensive acquisition
projects have come to be considered the most risk prone in the Defence domain. Such projects
often incur schedule delays, cost overruns and reduced functionality [DMO 2004]. The need to
address system integration in Defence has become compelling. Research programs have been
established to investigate techniques and frameworks for identifying risks. Technical
Readiness Levels (TRLs) and System Readiness Levels (SRLs) address some issues [Smith et al.
2004], but are not sufficient for identifying system integration risk as they do not provide an
explicit risk framework [Nandagopal 2006].

DSTO-TR-2204

A software architecture evaluation framework can provide a process for identifying the
technical risks of a proposed architecture. Every software system has an architecture that
serves as a foundation for how the system is developed and its elements are integrated to
deliver required functionality and qualities [Bass et al. 2003]. The earlier risks are identified,
the greater the probability that the system will be cost effective, delivered to schedule and
perform as required.

The work in this report was conducted under the Airborne Mission Systems (AMS) Branch
Long Range Research (LRR) task (06/075) in collaboration with National Information and
Communication Technology Australia (NICTA). This report documents the development of
an evaluation method for middleware-based software architectures of airborne mission
systems. This includes codification of the evaluation process and reuse of evaluation
knowledge from one project to another. Such a capability promotes organisational learning
and enables effective and efficient evaluation of projects.

Using NICTA's middleware-based architecture evaluation research, the project focused on the
application of software architecture evaluation techniques and tools to the domain of airborne
mission systems. An evaluation method for a generic middleware-based airborne mission
system was developed and applied to the Hybrid Mission System Testbed (MST) at the AMS
Branch of DSTO.

This report is organised as follows:

• Section 2 discusses middleware architectures and their impact on system quality.

• Section 3 reviews related work from three aspects: software architecture evaluation
methods, middleware evaluation approaches and the use of scenarios for architecture
evaluation.

• Section 4 presents the generic MEMS approach, before it was modified for the airborne
mission systems domain.

• Section 5 presents the extension to MEMS that was developed in order to evaluate
middleware-based airborne mission systems.

• Section 6 overviews the architecture and components of the Hybrid MST and
discusses the particular configuration of components to be used for the evaluation.

• Section 7 outlines an evaluation plan to apply MEMS to evaluate the Hybrid MST,
which establishes the base for the next phase of the evaluation.

• The report is summarised and the next phase of the evaluation of the Hybrid MST is
discussed in section 8.

DSTO-TR-2204

2. Middleware and System Quality

Middleware architectures play a crucial role in determining the overall quality of many
distributed applications. Middleware refers to a broad class of software infrastructure
technologies that use high-level abstractions to simplify construction of distributed systems.
This infrastructure provides a distributed environment for deploying application-level
components. These application components rely on middleware to manage their lifecycle and
execution, and to provide off-the-shelf services such as transactions and security.

Consequently, the application component behaviour and middleware architecture are tightly
coupled, and middleware plays a critical role in achieving the quality attribute requirements
of distributed applications. If the middleware architecture is poorly designed or implemented,
contains subtle errors, is inefficient or lacking in features, it may eventually lead to the failure
of applications in meeting their intended requirements.

An evaluation method for middleware-based applications would, therefore, be useful to
rigorously assess a technology and determine its fitness for purpose for an application. Such a
method would also benefit the ADF, which could use this approach to uncover potential
design and implementation problems in systems and platforms that incorporate middleware.

Middleware creates new challenges and issues for software architecture evaluation methods.
Firstly, middleware technologies are horizontal in nature, providing mechanisms for a wide
range of applications in many vertical application domains. The business goals for an
application from the perspective of stakeholders are more likely to address the domain-
specific application behaviour rather than the requirements for the middleware itself. This
indicates that evaluation methods for middleware should be driven by the concerns of
individual quality attributes within the scope of specific business goals.

Secondly, the ability of a middleware technology to support given quality attributes depends
on the mechanisms and services provided by the infrastructure. Middleware technologies
normally provide the flexibility of different mechanisms to address the same quality attribute.
For example, different design patterns can be supported to provide concurrency and each has
implications for a number of attributes, such as liveliness, performance and scalability. This
indicates that evaluation methods require detailed technical input regarding the middleware
infrastructure, including its programming model, application programming interfaces (APIs),
configuration and deployment. This kind of knowledge helps to identify the effect of different
middleware architectures on quality attributes.

Thirdly, middleware technologies are becoming increasingly complex. They typically have
several thousand API calls and a collection of integrated services and tools of varying
importance to different applications. This makes it difficult to evaluate the quality of a
complete middleware technology. Evaluation methods need to be flexible and able to quickly
provide feedback on alternative middleware architectures with respect to multiple quality
attributes.

DSTO-TR-2204

3. Software Architecture Evaluation

3.1 Scenario-Based Architecture Evaluation Methods

Software architecture evaluation methods and techniques have been widely studied. These
methods and techniques have focused on understanding the relationship between software
architecture and one or more quality attributes to ensure that the system ultimately achieves
its quality goals while still supporting its functional requirements. A review of these
techniques can be found in [Ali-Barbar & Gorton 2004] and Chapter 6 of [Bass et al. 2003].

Scenarios are defined to understand how a software architecture responds with respect to
attributes such as maintainability, reliability, usability, performance and flexibility. Examples
of scenario-based methods are the Software Architecture Analysis Method (SAAM) [Kazman
et al. 1994], Architecture Tradeoff Analysis Method (ATAM) [Kazman et al. 1998] and
Architecture Level Modifiability Analysis (ALMA) [Bengtsson et al. 2004]. The remainder of
this section considers these methods in terms of their inputs, outputs and the roles involved.

SAAM deals mainly with maintainability. Its inputs are software architecture descriptions and
quality requirements from stakeholders. SAAM normally investigates and collects
requirements from stakeholders using interviews.

ATAM is a two-phase method. The inputs to the first phase include general scenarios (or
requirements from stakeholders), software architecture design documentation and the
formation of the evaluation team. The tasks in the first phase are to transform general
scenarios into specific scenarios and evaluate the software architecture against specific
scenarios. The second stage of ATAM presents the results to stakeholders, who provide the
business goals, and matches the software architecture with the business goals to analyse the
impact of architecture changes based on each scenario. ATAM also deals with multiple quality
attributes. ATAM collects the requirements of stakeholders in brainstorming sessions on the
scenarios related to the business goals.

PASA [Williams & Smith 2002] is similar to the first stage of ATAM and is dedicated to the
evaluation of performance of software architectures. PASA applies software performance
engineering to the analysis step of the first phase of ATAM. PASA focuses on performance
evaluation and its inputs include use cases, the software architecture to be assessed and the
performance related scenarios derived from use cases.

Mature approaches such as ATAM and SAAM have both technical and social aspects. The
technical aspects deal with the collection of data and analysis techniques, while the social
aspects involve interaction among stakeholders, software architects and evaluators.
Technically, MEMS targets middleware, which is a component of the overall software
architecture to be evaluated. Therefore it demands more inputs to support the techniques,
tools and mechanisms to evaluate middleware architectures and technologies. Consequently,
the roles involved in MEMS are more technical and require architects and designers who have
considerable knowledge and experience with the use of middleware [Gorton et al. 2003].

DSTO-TR-2204

The relationship between architecture evaluation methods and software development
processes is explored in [Nord & Tomayko 2006]. Architecture-centric approaches, such as
ATAM, can be applied to the analysis and testing phases of extreme programming activities.
Design analysis using ATAM provides early feedback for understanding architectural
tradeoffs, decisions and risks. MEMS enhances the development process by emphasising
quality attributes and focusing on architectural design decisions in projects where middleware
is evolving rapidly to support emerging technologies and agile development methods are
applied.

3.2 Evaluation of Middleware

The i-Mate process [Liu & Gorton 2003] has been applied to evaluate Commercial-Off-The-
Shelf (COTS) middleware technologies, particularly for the acquisition of middleware for
enterprise applications [Nord & Tomayko 2006]. i-Mate is similar to the first phase of ATAM,
and requires stakeholders to input business requirements for the middleware to be acquired.
The evaluation of performance and scalability is conducted in a laboratory environment by
running a predefined benchmark application on all candidate middleware.

Both i-Mate and MEMS require techniques specific to middleware infrastructure, as
prototyping with the middleware is essential to conducting the assessment. MEMS is different
from i-Mate in that MEMS is concerned with evaluating alternative solutions using a single
middleware infrastructure. Business goals are imposed on the output of MEMS and are not a
portion of the method. The evaluation is driven by concerns about the quality attributes for
specific designs using middleware. In this sense, MEMS is more lightweight and agile than i-
Mate.

Methods and techniques are also available to evaluate specific quality attributes of
middleware systems [Gorton et al. 2003; Kanoun et al. 1997]. Quantitative quality attributes,
such as performance and availability can be assessed through measurement, analytical
modelling and simulation. For example, Tang et al. [2004] presented an availability model and
analysis method for Sun's Java Application Server, Enterprise Edition 7. The study applied
Markov reward modelling techniques on the target software system and estimated the model
parameters from laboratory or field measurements.

3.3 Use of Scenarios for Architecture Evaluation

Scenarios have been used in several disciplines, e.g. military and business strategy, and
decision making. The software engineering community initially used scenarios in user-
interface engineering, requirements elicitation and performance modelling. More recently,
scenarios have been used in software architecture evaluation [Bass et al. 2001]. Scenarios are
effective for software architecture evaluation because they are flexible and, therefore, can be
used to evaluate most quality attributes. For example, scenarios that represent failure can be
used to examine availability and reliability, scenarios that represent change requests can be
used to analyse modifiability, scenarios that represent threats can be used to analyse security
and scenarios that represent ease of use can be used to analyse usability. Also, scenarios are

DSTO-TR-2204

usually concrete, which enable the user to more easily understand their effect [Boehm & In
1996].

The software architecture community has developed different frameworks for eliciting,
structuring and classifying scenarios. These include a two dimensional framework to elicit
change scenarios [Lassing et al. 1999], a generic three dimensional matrix to elicit and
document scenarios [Kazman et al. 2000] and a six elements framework to structure scenarios
[Bass et al. 2003].

The scenario generation framework in Table 3-1 is used in MEMS to generate scenarios
during scenario development activities. This framework provides a systematic way of
capturing and documenting general scenarios, which can be used to develop concrete
scenarios and to select an appropriate reasoning framework to evaluate the software
architecture.

Table3-1. Six elements scenario generation framework. Adapted from [Bachmann et al. 2003]

Elements Brief Description

Stimulus

Response

Source of stimulus

Environment

Stimulated artefact

Response measure

A condition that needs to be considered when it arrives at a
system

The activity undertaken after the arrival of the stimulus

An entity (human, system or any actuator) that generates the
stimulus
A system's condition when a stimulus occurs, e.g. overloaded or
running
Some artefact that is stimulated; it may be the whole system or
part of it
The response to the stimulus should be measurable so that the
requirement can be tested

It is important to note that the term scenarios in software architecture is different to that used
in object oriented (OO) design methods, in which it generally refers to use-case scenarios (i.e.
scenarios describing system behaviour). Instead, quality sensitive scenarios describe an action,
or sequence of actions, that might occur with the system to be built by using a particular
architecture. For example, a change scenario might describe a certain maintenance task or a
change to be implemented [Liu & Gorton 2003].

Scenarios used in software architecture evaluation are classified into various categories, e.g.
direct scenarios, indirect scenarios, complex scenarios, use case scenarios, growth scenarios
and exploratory scenarios [Dobrica & Niemela; Gorton et al. 2003; Lawlor & Vu 2003]. The
Software Engineering Institute (SEI) has collected general quality attribute scenarios that are
intended to encompass all of the generally accepted meanings for quality attributes [Barbacci
et al. 1995]. A general scenario is, in effect, a template for generating a specific quality-attribute
scenario. For example, two (abbreviated) modifiability general scenarios are: (1) changes to the
platform occur and (2) additional distributed users arrive at the system.

DSTO-TR-2204

Since not all of the general scenarios for a particular quality attribute will be relevant to a
particular system or class of systems, the analyst must identify those that should be
considered and make them system specific [Kanoun et al. 1997]. General scenarios can also be
categorised according to domain specific software change categories to help the analyst
identify those general scenarios that are relevant and need to be made system specific with the
help of stakeholders for a particular type of application.

4. MEMS

MEMS is a scenario-based method for evaluating multiple quality attributes of middleware
architectures. Similar to other scenario-based evaluation approaches such as SAAM and
ATAM, MEMS is founded on key scenarios that describe the behaviour of a middleware
architecture with respect to particular quality attributes and in particular contexts. The quality
goals and their expression in the form of key scenarios drive the evaluation process. MEMS
defines the evaluation process in seven steps, which are described below. MEMS outputs the
ratings of each architecture against the quality attributes of interest. The seven steps of MEMS
along with the artefacts produced at each step of the middleware evaluation are depicted in
Figure 4-1.

Main concerns
of quality
attributes

Utility tree
Scale

definitation

1. Determine
Quality

Attributes -7/
2. Generate

Key Scenarios
I 3. Define

Quality Rating
Scale

I
1/

4. Determine
Architecture
Alternatives

Analyse
Tradeoff

Architecture
design

Suggest
Improvement

sz
7. Present
Evaluation

Results

6. Evaluate
Quality

Attributes

Output Result
presentation

Ratings for each
quality attribute
and architecture

t
5. Prototype

Deployable
implementation

Figure 4-1. The steps involved in MEMS

DSTO-TR-2204

Step 1. Determine Quality Attributes

The first step is for the evaluator to determine the quality attributes of interest. As discussed
in Section 3, one aspect that differentiates MEMS from SAAM, AT AM, and i-Mate is that
MEMS is not driven by quality requirements derived from the business goals. Instead, it
addresses general quality attributes, such as performance, availability, scalability and security.
The main concerns for a quality attribute must be specified within this step. One quality
attribute may embody many specific concerns. For example, secure communication can be
considered from four different views: privacy, integrity, authentication and authorisation. The
purpose of defining the general quality attribute concerns is to set the context for the next step
which generates key scenarios for each quality attribute.

Step 2. Generate Key Scenarios

Similar to other scenario-based evaluation methods, scenarios are adopted as the descriptive
means to capture concrete quality attribute requirements, as quality attributes by themselves are too
abstract for analysis. Real scenarios are developed for each identified attribute or its associated sub-
concern. This step also involves organising scenarios and quality attributes. A practical
approach for this is the AT AM utility tree (see Chapter 11 in [Bass et al. 2003]), which uses
quality attribute names as an organising vehicle.

Step 3. Define Quality Attribute Scale

Quantitative attributes can be evaluated using measurement, analytical modelling and
simulation techniques. For qualitative attributes, one common approach to consolidating
evaluation results is the Weighted Scoring Method (WSM) [Kontio 1996]. WSM requires a
clear and unambiguous definition of a rating scale, so that evaluators can give weights or
scores to qualitative attributes with respect to the middleware architecture. This step is
important so that evaluators have consistent rating criteria.

Step 4. Determine Architecture Alternatives

This step lists the alternative middleware architectures possible for the implementation being
considered. Middleware provides multiple mechanisms and services to support the same
functionality. Different mechanisms and services can be combined with patterns and
frameworks to form middleware architectures. Hence one scenario usually has several
alternative architecture solutions.

Step 5. Prototype

A prototype implementation is produced, one for each of the alternative architectures. This
step requires skill in programming using the middleware infrastructure as well as knowledge
of the techniques used in the middleware. A prototype is executed and measurements are
taken for quantitative attributes of interest. Prototyping is also useful to obtain feedback on
the architecture design and understand how it may impact other qualitative attributes.

DSTO-TR-2204

Step 6. Evaluate Quality Attributes

Evaluation techniques from the literature are applied for evaluating individual quality
attributes. For quantitative attributes, the evaluation focuses on producing the metric values
for a quality attribute, such as transaction response time for performance. Various techniques
are available based on analytical modelling, simulation or prototype measurement. For
qualitative attributes, evaluators give ratings for each architecture against the rating scales
defined for each quality attribute.

Step 7. Present Evaluation Results

The output of MEMS represents the ratings of each potential solution architecture against the quality
attributes of interest. The results can be utilised from several different perspectives. They can be further
input to other scenario-based architecture evaluation methods, such as ATAM for the trade-off analysis
of quality attributes, used to provide feedback to developers of the middleware infrastructure to further
improve the middleware, or used to evaluate whether the middleware architecture can fulfil the quality
requirements of the application to be built. The evaluation results are visually presented in a way
that clearly identifies the ratings of each middleware architecture with regard to individual
quality attributes.

MEMS is a lightweight approach as it only concerns interactions between two roles, namely
software architect and developer. The role of software architect deals with the activities from
steps 1 to 4. The developer provides the expertise and the programming skills for developing
the prototype in step 5. The developer has the experience to know the mechanisms and
services from the middleware infrastructure that can support the quality goals defined for
each architecture alternative. The software architect and the developer then work together on
step 6 to evaluate quality attributes. The developer provides feedback on the definition of the
rating categories and helps ensure it is clear and unambiguous. The software architect may
return to step 2 to refine the category definitions based on comments from the developer.

The architect then produces an evaluation form with the quality rating left blank for each
architecture. The form includes the required quality goals, scenario and architecture
descriptions, and the definition of the quality rating category. The developer will fill in the
evaluation form with ratings for each quality attribute and architecture against the criteria
defined in step 3.

The architect can further present the evaluation form to others who have equivalent
knowledge, skills and experience as the developer in the evaluation team, and get them to fill
in the form. Hence, the role of developer may be filled by more than one person. With
different developers assessing the architecture alternatives, a wider range of opinions can be
canvassed. If the opinions are inconsistent, the architect needs to further check the rating
category definitions that the architecture alternatives are described clearly, and the developers
have a clear understanding of the middleware infrastructure being used.

DSTO-TR-2204

5. Extending MEMS

5.1 Integrating Design Patterns

Developers of middleware-based systems can now employ abstractions, such as design
patterns and architecture styles, as guidance when designing and implementing software
architectures. These abstractions provide generic guidance regarding the implications of each
design pattern on one or a set of quality attributes. For example, the pattern definition
templates used in [Schmidt et al. 2000] have a consequence section to discuss the consequences
of each design pattern.

The solution proposed by a design pattern is generic to a type of problem and it has platform
independent descriptions of the pattern structure. However, the implementation of this
pattern is platform specific and encompasses variants to the generic descriptions. Many
decisions that impact quality attributes are embedded in a particular pattern. Software
architecture design with patterns needs to adapt the pattern to enable its use in a particular
context.

MEMS provides a flexible architecture evaluation method for middleware-based systems that
can integrate patterns with other artefacts, such as quality attributes and scenarios. This
section describes the extension to MEMS for evaluating the impact of alternative
implementations of design patterns on quality attributes.

Figure 5-1 illustrates the relationship between patterns and other artefacts of MEMS. The use
of patterns is an architectural design decision and a pattern is implemented to satisfy the
scenario defined for a particular quality attribute. A scenario has a set of responses and
stimulus and inherently these responses and stimulus are applied to patterns. Responses and
stimulus can be modelled by metrics of the quality attributes. A pattern also has a context,
problem domain and rationale behind the solution. This means that when the stimulus is
constructed as an input to the system under evaluation, the evaluation should be devised
within the context of the design pattern.

10

DSTO-TR-2204

Quality Attribute

Attributes

Operations

Metric

Attributes

1 • Operations

\.
Stimulus

Attributes

Operations

Problem

Attributes

Operations

Rationale

Attributes

Operations

Solution

Operations

Figure 5-1. Patterns, quality attributes and metrics

The generic MEMS approach is extended to integrate design patterns as shown in Figure 5-2.
As discussed above, architectural design decisions are embedded in design patterns. Step 4 in
MEMS Determine architecture alternatives (Section 4) is now customised as Determine pattern
alternatives. This step is further elaborated by three sub-steps:

• List quality attributes affected by the design pattern. This is achieved by examining
the design pattern descriptions for the structure (elements involved), dynamic (how
elements interact with each other) and consequences in a general context. The affected
quality attributes are described by the key scenarios produced by step 2 of MEMS. The
key scenario needs to match the problem and solution specification of the design
pattern.

• Determine the metrics for measurement. The quality attributes need to be described
using metrics so they can be evaluated through the measurement of these metrics. The
metrics can be either qualitative or quantitative. For example, the performance quality
attribute can be described by a quantitative metric such as response time, while the
programmability (or modifiability) quality attribute is more often evaluated by
qualitative measurement.

11

DSTO-TR-2204

• Identify pattern variants. A scenario can be supported by more than one pattern and
an individual pattern can also have a number of variants, such as applying different
communication protocols between two elements. The pattern structure, dynamic and
implementation descriptions can help to identify alterative design decisions using
patterns. For example, the active object pattern [Schmidt et al. 2000] can be applied to
improve concurrency. However it does not specify how synchronisation is
implemented. Different synchronisation strategies result in variants of the design
pattern and impact quality attributes.

The prototype of the architecture design needs to implement and evaluate the alternative
patterns or pattern variants. The rest of extension activities now can be seamlessly integrated
with MEMS.

Pattern
template

| Problem"

[Solution-

2. Generate
Key Scenarios

3. Define
Quality Rating

Scale

6. Evaluate
Quality

Attributes

4. Determine
Pattern

Alternatives

4.1 List quality
attributes

affected by this
pattern

4.2 Determine
metrics for

measurement

4.3 Identify
pattern variants

Pattern
template

Structure

Dynamic

Pattern
template

H | Structure |

| Dynamic |

I Implwnentation

Figure 5-2. MEMS extension for integrating design patterns

5.2 An Example

The performance quality attribute will be used to illustrate how to practice MEMS and its
extension for design patterns. The metrics of the performance quality attribute include
average response time, throughput and resource utilisation. The stimulus can be the arrival
rate under a certain distribution and the response can be the average response time of a group
of requests. One generic scenario is to maintain the throughput level when the arrival rate of
requests increases. The specified key scenario is to increase concurrency when the number of
requests exceeds a threshold.

The active object design pattern aims to enhance concurrency and simplify synchronised
access to objects that reside in their own threads of control (Chapter 5 in [Schmidt et al. 2000]).
The active object design pattern has a description including context, problem, solution,
elements in its structure and their dynamic interactions, the implementation generic to any
platform, and consequences. Information captured by the design pattern description is not

12

DSTO-TR-2204

specific to the key scenario described above, however it can be tailored to the key scenario
within the scope of the pattern problem and the pattern context. By further examining the
structure and implementation of the pattern, the following quality attributes can be identified.

• Information hiding (modifiability). The elements Proxy and Servant separate method
invocation and execution.

• Intermediary (modifiability). The element Scheduler acts as an intermediary that
schedules the execution invocation.

• Binding time (modifiability). The active object pattern assumes that requests for the
object arrive at the object at runtime. The binding of the client to the proxy, however,
is left open in terms of binding time.

• Scheduling policy (performance). The Scheduler implements some scheduling policy.

• Multithreading (performance). The Scheduler and Servant execute in a separate thread
from the Proxy and the client.

• Synchronisation (performance, scalability). The synchronisation operations performed
by the Scheduler through the method guard incur performance overhead and the
synchronisation strategy can affect scalability when concurrent requests are
synchronised.

• Synchronisation (liveliness). The synchronisation operations performed by the
Scheduler through the method guard have impact on liveliness. Inappropriate
implementation of the scheduling policy and the method guard can lead to deadlock,
starvation or livelock.

The variants of active object pattern are discussed within the pattern description in [Schmidt
et al. 2000]. It can be seen from the analysis above that synchronisation impacts performance
and liveliness. The concurrency strategy can be implemented at different levels to support
synchronisation. Locking oriented mechanisms for concurrency control can be considered
pessimistic because the critical resources are locked even though operations may not be in
conflict with other executing operations. Variants of the active object pattern include:

• Read only. If the requests are read-only then synchronisation is not necessary, as the
states are never updated or changed.

• Read mostly. If most of the requests are read-only and only a small amount of requests
are updating states, the implementation can follow the read-mostly design pattern, in
which the read and write operation are separated from each other. The state involved
in read operations is not loaded until the state is updated by a write operation and
then an exception to invalidate the state is received.

• Optimistic Concurrency Control (OCC). In the OCC approach, resources are not
locked as it is assumed that they will not be modified by other operations. The
execution of an operation with OCC has a validation phase. When an operation T
finishes its computation, it enters the validation phase. All operations that conflict
with Tare restarted by checking the read-sets and the write-sets of transactions. OCC
is efficient only if the number of aborted operations is relatively insignificant. Hence, it
is cost-effective if the level of conflict is sufficiently low.

13

DSTO-TR-2204

These variants of the active object pattern can be prototyped within the scenario
implementation. Quality attributes such as modifiability, performance and scalability can be
evaluated and measured against the variants identified.

6. Hybrid Mission System Testbed

6.1 Overview

The purpose of the Hybrid MST is to provide infrastructure that enables the investigation and
demonstration of distributed computing technologies and concepts in modern airborne
mission systems. For example, system latencies, capacities and quality of service are issues
that are inherent to different network, system and component configurations.

The Hybrid MST is not a simulation of an airborne mission system; rather it incorporates
components similar to those found in such systems. The software consists of the Solaris
operating system, the Boeing Australia Software Architecture Framework (SAF), the Solipsys
Tactical Display Framework (TDF) and a number of software components developed by AMS
to exercise the SAF. While the software normally executes on a Sun Microsystems workstation
running Solaris, it can also be compiled and executed on a PC or deployed to any mix of PCs
and Sun workstations (except for the Rosetta Adapter, which must run on a PC). Deployment
is defined at run-time.

The SAF provides common functionality for the development of systems consisting of
distributed components and service oriented architectures. It encapsulates the details of the
Common Object Request Broker Architecture (CORBA) middleware and transports. The
CORBA specification supplies a set of abstractions and services to address the problems
associated with distributed and heterogeneous computing systems. These problems include
reliance on programming languages, operating systems, communication protocols and
hardware. More detailed information on CORBA can be found in [Henning & Vinoski 1999;
CORBA 2006].

The SAF is built on ACE1, the ADAPTIVE2 Communication Environment, which mitigates the
direct dependence of application software on the underlying operating system. ACE,
developed by the Distributed Object Computing (DOC) Group, is an open-source OO
framework that implements many core patterns for concurrent communication software. The
main application of ACE is the development of high performance, real-time and distributed
communication services, with the aim of reducing complexity through higher layer
abstractions. An additional abstraction layer, The ACE ORB3 (TAO4), implements the CORBA
middleware specification while utilising the patterns and mechanisms of the lower ACE
abstraction.

1 http://www.cs.wustl.edu/~schmidt/ACE.html.
2 A Dynamically Assembled Protocol Transformation, Integration, and evaluation Environment.
3 Object Request Broker
4 http://www.cs.wustl.edu/~schmidt/TAO html.

14

DSTO-TR-2204

The SAF, along with ACE, incorporates a platform abstraction layer that normalises
environmental function in accordance with standards (e.g. POSIX) and is therefore source and
function compatible across multiple platforms, including Solaris and Windows.

The SAF core is based on a CORBA Component Model (CCM) organisational style, but
predates CCM. Internal SAF structures are transparent to standard CORBA environments and
interfacing mechanisms, allowing for standards-based component integration.

The SAF provides a set of utilities, containers (based on the C++ standard template library
(STL)) and patterns that provide general services to components, with the aim of increasing
the rate of component development and reducing integration risk. The SAF provides services
relevant to distributed computing environments, for example dynamic component
deployment (the idea of application containers is supported), event management, concurrency
control, streams and system configuration control. The use of design patterns that emphasise
distribution and concurrency [Lea 1999] addresses the properties generally required of
modern airborne mission systems, for example:

• Performance: latency, throughput, CPU utilisation, memory utilisation and LAN
utilisation.

• Availability: robust to failure and efficient recovery and restart.

• Extensibility, modularity, scalability and interoperability.

The custom software developed by DSTO for the Hybrid MST takes the form of software
components5. This reduces coupling and permits communication via an ORB. The
components of the Hybrid MST can be grouped into four main categories (Figure 6-1) and
represent: COTS, the stimulation environment, mission computing components and
monitoring components. The following overviews components developed by DSTO:

• The stimulation environment provides components that generate traffic to alter the
state of the Hybrid MST:

• A Test Track Generator populates and updates the Track Manager component
with random tracks.

An Air Vehicle component provides a simple model of an aircraft that
maintains the aircraft position.

The STAGE6/MST Interface enables the Hybrid MST to use the STAGE COTS
product for ownship sensor and flight modelling.

5 Components are '...units of composition with contractually specified interfaces and explicit context dependencies only'
[Szyperski 1998, p. 41].

6 Stimulation Toolkit and Generation Environment

15

DSTO-TR-2204

Representative mission computing components:

• A Track Manager component maintains the tactical state of the aircraft. It
achieves this through a common repository of all tracks in the environment
and a collection of capabilities that can be applied to these tracks.

• An Ownship component maintains the kinematic state of the aircraft.

• A Rosetta Adapter component provides an interface between the Hybrid MST
and Rosetta, a COTS tactical data link gateway.

Monitoring components provide interfaces for observing the information received and
stored by other components of the Hybrid MST:

• A Track Monitor component periodically accesses and displays the details of
all tracks in the Track Manager to an operator.

• The TDFAdapter is technically not a component, but an active object activated
by the Track Monitor. The TDFAdapter provides an interface to the Solipsys
TDF application to enable visualisation of tracks contained in the Track
Manager.

COTS

Stimulation Env
Component

Mission Computing J
Component

Monitoring
Component

o

<D

O
TO

DLS-EC

M-Series
on NTDS

Link-11
NTDS ->IP

adapter

M-Series
on IP

J-Series
on 1553

Rosetta
Core

COTS Track
Data on IP

<D -a
o

o
sz
CD

>

Simulation

 }

STAGE SIM

STAGE / MST
Interface

n
2
XL
O

v>

w
Q.

'sz

Li

Operator

T

_L
Solipsys TDF

Generic Track
Interface Plug-in

COTS Track
Data on TCP/IP

o
•^

'c
o

o

a.
ra

T3
<
LL
a

ACEHAO/SAF

Operating System + Hardware + Network

Figure 6-1. Structure of the Hybrid Mission System Testbed

16

DSTO-TR-2204

The interaction between the Hybrid MST components is shown in Figure 6-2. Existing
components and their interaction with internal and external systems are shown in black, while
components and interactions yet to be developed are represented in blue.

The Hybrid MST is a flexible environment for exploring software architectures, and the
properties of the SAF and DSTO developed software. This allows integration issues and the
performance of various design patterns to be evaluated. The Hybrid MST also provides a
research capability to investigate the integration of airborne mission systems into NCW
environments, in which it would act as a node in a system of systems network. This section
has provided an overview of the Hybrid MST; a more detailed discussion can be found in
[Foster et al. 2007].

DLS-EC

J-series
Messages

Rosetta p1 ' ^
TADIL £=9T

Mesg DB

Mission Computing ^f

n
DIS

Network

Hybrid MST

Rosetta
Adapter

Test Track
Generator

Operator

Track
Monitor

Solipsys TDF

T
TDF

Adapter

Track
Manager

Rosetta
Adapter

Track
Stream
Adapter

Tracker
TBD

Own Ship
Status

Radar
Model

Other Sensor
U Models

Scenario Entity I
Models

Own Ship
Model

Own Ship
Nav

Model

DIS
Interface

DLS-
EC

J-series
Messages

STAGE SIM

Track Data
Streams

Remote
Track
Users 1

Sensor Reports

Remote Fusion
Engine

„

Figure 6-2. Interaction between components in the Hybrid Mission System Testbed (existing
components are shown in black and future work is shown in blue)

17

DSTO-TR-2204

6.2 Components used for Evaluation

6.2.1 Overview

The major components that will be used for the purpose of evaluating the Hybrid MST are:
the Test Track Generator, Track Manager and Track Monitor (including the TDFAdapter).
This configuration is shown in Figures 6-3 and 6-4. Together these components form a
multithreaded, component-based, distributed application that is able to create, update,
manage and use data objects called tracks.

COTS

Operator

T

Stimulation Env
i

t Component
Solipsys TDF

Mission Computing
Component Generic Track

Interface Plug-in
Monitoring n

Component COTS Track
Data on TCP/IP

1 r

O
•4-*
CO O) O <D
0) 03

c c o
5.
03

H CD
03
5 2 <

^ .*: o U.
o
03 CO

u.
i-

03 Q
h-

ACE/TAO/SAF

Operating System + Hardware + Network

Figure 6-3. The major components used to evaluate the Hybrid Mission System Testbed

18

DSTO-TR-2204

Hybrid MST
Operator

 ?

DLS-EC

Rosetta
TADIL

Mesg DB

Track
Monitor

Messages

Rosetta
Adapter

Solipsys TDF
~I

DLS-
EC

Mission Computing ^

Modelling & Simulation JL

TDF
Adapter

Track
I '; •

Rosetta
Adapter

J-senes
Messages

lOwn Ship PPLI

Track
Stream
Adapter

Track Data
Streams

Remote
Track
Users

DIS
Network

Tracker
TBD

Own Ship
Status

1
Radar
Model

Other Sensor
Models

Scenario Entity |
Models

Own Ship
Model

DIS
Interface

Own Ship
Nav

Model

STAGE SIM

Remote Fusion
Engine

Figure 6-4. Interaction between the components used to evaluate the Hybrid Mission System Testbed
(the components to be used for the evaluation are shown in pink)

6.2.2 Test Track Generator

The Test Track Generator component consists of two active objects: a Track Writer and a Track
Updater. Using Track Writer and Track Updater active objects enables the two tasks of writing
and updating tracks to be performed as concurrently as possible with the one local container
in the Test Track Generator.

The Track Writer defines the track details of a track (step 1 in Figure 6-5), which consists of
data such as: track identification number, latitude, longitude and status (pending, unknown,
assumed-friend, neutral, suspect, hostile and undefined). Tracks are added to the Test Track
Generator's local container (step 2 in Figure 6-5), which employs the containment pattern. The
Track Writer then invokes the Track Manager's updateFusedTrackData method (step 3 in Figure
6-5) to add tracks to the Track Manager (Section 6.2.3).

19

DSTO-TR-2204

Test Track Generator - Track Writer

0. init() Track Writer
«activeObject»

TrackGenStrategy

Track Manager

Figure 6-5. Collaboration diagram for writing tracks from the Test Track Generator

The Track Updater (Figure 6-6) is responsible for updating the latitude and longitude of
tracks so that if a visual display is used the tracks will move over time. A callback is used to
update the Test Track Generator's local manager with new latitude and longitude for each
track. Concurrency patterns are used to synchronise reads and writes to the local manager.

When a callback from the Track Manager is invoked by the Track Updater, the run method of
the Track Updater calls for_each (an implementation of iteration patterns) over the local
manager to update the Track Manager's container with tracks from the Test Track Generator.

Test Track Generator - Track Updater

0. init() Track Updater
«activeObject»

for each

callback_ op

2- callback(Track
Manager reference)

4. updateFusedTrackData(trackData)
Track Manager

callback

Figure 6-6. Collaboration diagram for updating tracks from the Test Track Generator

20

DSTO-TR-2204

6.2.3 Track Manager

The Track Manager maintains a common repository (i.e. containment pattern) of tracks in the
environment and provides a collection of capabilities to manage those tracks. The main
patterns used in the Track Manager are component home, factory method, active object,
leader/follower, evictor, facade, iterator, and scoped locking with read/write semantics
implemented through the use of various mutex methods. Other patterns used but not
discussed in this report are monitors and channels. Collaboration diagrams are provided
(Figures 6-7 and 6-8) that map patterns to aspects of the process of writing and updating
tracks and indicate the sequence of events.

The component home pattern is similar to patterns employed by other component
technologies that use containers, e.g. home in CORBA 3 [OMG 2004], EJBHotne in Enterprise
Java Beans [DeMichiel & Keith 2006] and container in .NET [MSDN 2007]. The Track Manager
is essentially a component home for tracks and provides a central location to create, store and
access tracks in a distributed environment. The Test Track Generator (Section 6.3.2) is able to
create or update tracks with a single call to the Track Manager. The Track Monitor (Section
6.3.4) is able to access the tracks through the use of a finder interface which is implemented
with callbacks, iterators and locks.

The tracks in the repository are static and the Track Manager relies on updates from the Test
Track Generator. The Test Track Generator interacts with the Track Manager through a single
event (step 0 in Figures 6-7 and 6-8): a call to the Track Manager's updateFusedTracks method
(defined in CORBA's Interface Definition Language (IDL)), which performs aspects of the
behaviour of the factory method of the component home pattern. The role of the
updateFusedTracks method is to create a track if it does not exist or update an existing track.
This event is handled through a Fused Track Updater, which uses a combination of the active
object and leader/follower patterns. The Fused Track Updater separates the track repository
update from the general execution of the Track Manger, enabling internal processing and
requests from other clients to occur concurrently.

A requirement of the Track Manager is to handle multiple update requests simultaneously.
Simply being multithreaded does not guarantee efficiency in the execution or handling of
these requests. Therefore, the leader/follower pattern is used as a handoff strategy [Schmidtef
al. 2000] to enhance system responsiveness to requests. The parallelism of the leader/ follower
pattern provides for liveliness in performance when updating the Track Manager from
multiple track sources. A thread pool is required to accommodate the leader/follower pattern
and, therefore, a thread pool (managed by a Pooled Executor) is instantiated within the scope
of the Fused Track Updater. The Fused Track Updater is the source of the threads that execute
commands generated by input clients (e.g. multiple Test Track Generators). Therefore, there
can be many clients generating update events and each event can be handled efficiently with
minimal blocking. The purpose of using this pattern is to enable the design of the Track
Manager to dynamically adapt to a changing number of input clients.

The Fused Track Updater submits itself to the Pooled Executor for execution. As the Pooled
Executor is instantiated within the scope of the Fused Track Updater, the Fused Track
Updater is actually submitted to itself for execution (step 2 in Figures 6-7 and 6-8) and the

21

DSTO-TR-2204

execute method of the Pooled Executor is called (step 3 in Figures 6-7 and 6-8). The Pooled
Executor invokes the run method of the Fused Track Updater, which invokes the uftd method
of the Fused Track Updater (step 4 in Figures 6-7 and 6-8). The remainder of the steps in
Figures 6-7 and 6-8 (steps 5 to 21 for writing a new track and steps 5 to 14 for updating an
existing track) are all performed in the uftd method. Consequently, locks (described below) on
the Track Manager's container are placed in the uftd method.

To manage the lifecycle of a track object, the Track Manager requires mechanisms for the
removal and deactivation of tracks from the repository. Data associated with a track object is
volatile and dynamic and becomes obsolete if not updated periodically. Tracks are removed
from the Track Manager through a track eviction mechanism (based on an evict time), which
employs the active object pattern for parallel execution.

The finder component of the component home pattern is the interface that allows clients to
access tracks that are managed by the Track Manager. This interface employs a facade pattern
[Gamma et al. 1995] that simplifies the use of an iteration process within the context of
read/write semantics. The benefit of using the faqade pattern is that it makes accessing
external representations of tracks independent of the way they are stored within the Track
Manager. It also ensures that access to the tracks is managed in a thread-safe manner so that
data integrity is guaranteed in multithreaded environments.

The iterator is a design pattern used to access elements of an object without exposing the
underlying representation of the object. As such, the Track Manager uses iterators in
conjunction with read/write semantics to perform the finder task required by the component
home pattern. Internally, the Track Manager uses an STL map implementation protected by
read/ write semantics to store tracks and thus uses STL iterators to traverse the map. Rather
than force clients to work with iterators and synchronising mechanisms directly, the Track
Manager uses a facade pattern to provide an interface that a client, in conjunction with
providing a callback interface, can use to locate and operate on tracks.

While in this case there are no real drawbacks to using the facade pattern to provide the finder
interface, there are concurrency issues concerning the liveliness of the Track Manager when
using iterators in conjunction with read/write semantics. Each time an iterator is used to
iterate over the container, a read lock must be exerted to ensure the container organisation is
not altered during reads as this would invalidate the iterator. If there are many clients wishing
to access the tracks concurrently then there may be many iterators operating on the container
and thus many read locks exerted. If another client wanted to alter the container's
organisation by adding or removing a track it would require a write lock, but the write lock
would block until all readers have finished. A reduction of liveliness could result if there were
many tracks in the container and many clients reading from and writing to the container. If
liveliness was to become a performance issue, other methods of providing access to tracks
would need to be explored.

The use of callbacks when taking read locks has a latency effect. While this is not an issue for
containers with low volatility, if the container in the Track Manager becomes highly volatile
an alternate method may need to be considered.

22

DSTO-TR-2204

The protection of the Track Manager's container is achieved through extensive use of
read/write locking semantics. These semantics are accomplished through the use of scoped
locking approaches and patterns.

Read/write locking works by allowing multiple readers to simultaneously access an object
without being blocked, whereas a writer must have exclusive access to the object. When a
writer requires access to the object all new arriving readers are blocked, with the writer forced
to wait until all current readers have released their locks. If there are multiple write requests,
access is typically granted in FIFO order with priority given to waiting writers over waiting
readers.

Scoped locking through the use of guards (an idiom) is a pattern designed to simplify locking
semantics to ensure locks are acquired and released consistently. An implementation of a
guarding pattern is utilised, which acquires and releases locks based on scope. This prevents
aberrant locking, particularly due to abnormal conditions (e.g. exceptions), or poor
programming practices by ensuring that acquired locks are always released. The ACE
framework provides read guard and write guard that implement scope-based semantics through
scoped locking patterns.

23

u
TO
i—

h-

z
0)

Q)
en
03
c
03

o
03

* l

|

=
•B
'C
3
»-

g
£

c
5

o -c
"—i
Q u

i

IN

3

o
D

in
CN

fill

o

H
cn
c
u)
X

LU

3 CD
"O
Q.
3

en
CD
c
CD

o
£5

•8

I!

•8
I
S

'•C
•§
6. a

S

I
a o

c3
i
5>

DSTO-TR-2204

6.2.4 Track Monitor

The Track Monitor is a simple component that periodically accesses and displays the details of
all tracks in the Track Manager to an operator (Figure 6-9). The Track Monitor is responsible
for activating two active objects (Track Streamer and TDFAdapter), which output information
contained in the Track Manager in alternative ways.

The Track Streamer defines an output stream as its means for output, which is a common
interface for writing data. This output stream conforms to a push model for writing,
indicating that it knows the identity of the receiver before pushing the message. A callback is
defined to encapsulate the writing of tracks to this output stream.

The TDF Adapter provides an interface to the Solipsys TDF. This adaptation is encapsulated
within a callback to ensure the necessary data conversions take place for accurate
representation on the TDF Graphical User Interface (GUI).

Track Monitor and TDFAdaptor

5. for_each(sequence of track
references, callback)

p
5

r

3. getTracksQ

TrackMonitorJmpI

• r

for_each TDFStreamer_ Track Manager 4. Sequence of track
references

e

\ ^°,0

7. Send

\ '

TDF

Figure 6-9. Collaboration diagram for displaying tracks

2b

DSTO-TR-2204

7. Evaluating the Hybrid Mission System Testbed using
MEMS

7.1 Mapping MEMS Artefacts, Roles and Tasks

Figure 7-1 maps the architecture design artefacts discussed in Section 4 to elements of the
Hybrid MST. It demonstrates that the software components and their interactions with the
middleware-based environment determine the key scenarios of the quality attributes. The
MEMS approach should be applied within the technology context of these software
components.

Operator

t

1. Generate
stimulus (based
on quality
requirements)

05
CD
c
CD

o

TO

2. Key
scenarios

S

(0

Solipsys TDF

Generic Track
Interface Plug-in

COTS Track
Data on TCP/IP

c o

ra

CD
•*—•

TO
< 3. Embedded

real-time
CORBA patterns

4. Alternative design
patterns
5. implementation
(applying patterns)

Figure 7-1. Mapping MEMS artefacts to the Hybrid Mission System Testbed

27

DSTO-TR-2204

The roles of the generic MEMS approach are further mapped to the context of this architecture
evaluation project. The MEMS approach involves activities from two sides, DSTO and NICTA.
The leader of this evaluation project at DSTO represents the role of the stakeholder.
Stakeholders define business goals and provide requirements for the evaluation project. It is
worth noting that the requirements are for middleware quality attributes and not for a system
deployed and running on the middleware. The role of the architect is fulfilled by both NICTA
researchers and the evaluation team at DSTO. NICTA researchers act as the architect for
MEMS, by extending and customising MEMS to the context of airborne mission systems.
NICTA also takes a support role by working with the DSTO evaluation team to plan the
evaluation according to the MEMS steps. The evaluation team consists of software architects
and researchers from DSTO, who have expertise in airborne mission systems. The evaluation
team follows the MEMS steps and steers the evaluation process. The evaluation involves the
instrumentation, configuration and further development of the Hybrid MST, running
experiments and taking empirical measurements. This task is performed by developers from
DSTO. The developers also work closely with the evaluation team by providing feedback and
comments on the feasibility of the evaluation plan.

7.2 Identifying Important Architectural Patterns for Evaluation

Section 6.2 discussed the components to be used for the evaluation of the Hybrid MST and a
number of design patterns applied in the development of these components. Two key design
patterns are applied in the Hybrid MST: active object and leader/follower [Schmidt et al.
2000]. These two patterns are used to manage the concurrency of processing track creation
and update operations.

The Track Writer and Track Updater (in the Test Track Generator), and the Fused Track
Updater (in the Track Manager) are all active objects. An active object processes requests
within its own thread of control and is implemented as a runnable object, which is submitted
to an executor that has an underlying thread pool. The Track Writer active object generates
requests to create a new track and the Track Updater active object updates existing tracks. The
operations performed by these two active objects are not orthogonal because they both share
the local container in the Test Track Generator and the container in the Track Manager.
Creating and updating track requests are two classes of workload that can be generated from
the Test Track Generator.

The other source of workload is the request to display tracks from the Track Monitor and
TDFAdaptor. The for_each method is of concern in terms of the performance evaluation, as it
iterates over the set of tracks that is returned by invoking the Track Manager's method
getTracksQ. The requests can be generated by running Track Monitor and TDFAdapter.
Multiple instances of these two components can be executed to generate the workload
required.

The execution of Fused Track Updater is multithreaded, supported by a Pooled Executor in
which the leader/follower design pattern is applied.

28

DSTO-TR-2204

These three sources of concurrent requests incur contention over the container inside the
Track Manager. This container has a STL data structure to store the tracks in memory.
Concurrent access to the container is controlled by:

• A synchronisation macro implemented using a locking mechanism called a read/ write
mutex (i.e. read locks and write locks can be taken separately).

• A mutually exclusive lock with acquire and release semantics (i.e. there is no concept
of read or write and all other threads are prevented from accessing a track even if just
reading).

In the SAF, a lock cannot be upgraded or downgraded. Regardless of whether a read or write
lock is held, a lock is obtained before its execution can be performed in the container. Figure
7-2 shows the locks and concurrent requests from three sources. This indicates that the
performance and scalability in terms of the throughput depend on two factors: the workload
from these three sources and the locking strategy inside the Track Manager.

Creating Track

Find
track

Insert
track

Get lock (Container)

Release lock

Get lock

Release lock

Updating Track

Get lock

Display ing Track

Find Track
(Synchronized)

Update
Track
(Synchronized)

Release lock

r-^— Get lock

I ! Release lock

Iteration over
The copy of

tracks and container

Figure 7-2. Locks and concurrent load

For exclusive locking, the time spent on blocking is critical to the overall performance, because
a lock needs to be acquired for each operation of interest and it involves the iteration over
each track in the container. An operation can be blocked for a calling thread up to maxjivait
time, when the thread requests a lock.

Based on above understanding of the Hybrid MST, the optimisation of quality attributes
within this architecture is likely to be focused on locking management and optimisation for
exclusive locks. Therefore, this forms an important scenario for quality attributes that include
performance, scalability, modifiability and liveliness.

The limitation of the SAF on optimising the locking mechanism needs to be examined. In
particular, the components of the SAF that might be affected or required to evolve need to be
identified. This could be an important output of evaluating the Hybrid MST by identifying the

29

DSTO-TR-2204

limitations of the current middleware infrastructure and evaluating the cost of improving this
through the modifiability quality attribute.

73 Outline of the Evaluation Plan

The following is an outline of an evaluation plan for the Hybrid MST:

• Determine the quality attributes of interest. An initial list of quality attributes has been
identified:

• Performance in terms of response time of request execution and overall throughput.

• Scalability in terms of how the system performs when the number of tracks from one
source is increased or the number of track sources is increased.

• Modifiability in terms of the development cost when additional functionality is added.

• Liveliness in term of the occurrence of deadlocks, starvation and livelock.

• Construct the key scenarios for each quality attribute. These key scenarios directly
affect the design and implementation of the evaluation testbed.

• Define the metrics for measurements of each quality attribute. These metrics can be
identified based on analytical models, which provide guidance regarding the impact
of changing analytical model parameters.

• Define the test cases and the measurements for each test case. This is integrated with
the prototype step within MEMS.

• Collect and analyse results. Note that this step may lead to refinement of the test case
if the results are not as expected or the results are not complete. More results will then
be collected and analysed.

• Document the results, possibly using an architecture knowledge management tool
developed by NICTA [Ali-Barbar et al. 2005].

A complete evaluation plan will be developed based on the above outline.

30

DSTO-TR-2204

8. Summary

The ADF is acquiring airborne mission systems that incorporate component-based and
distributed computing systems. These systems are built on middleware, which is a broad class
of software infrastructure technologies that use high-level abstractions to simplify the
construction of distributed systems. Therefore, middleware significantly impacts the overall
quality of the system.

As a technical evaluator of ADF acquisitions, DSTO has developed a research program to
investigate methods and techniques to evaluate component-based and distributed software
architectures. This research is being conducted under AMS LRR Task 06/075 and involves
collaboration between DSTO and NICTA.

Further research will involve: the development of a detailed evaluation plan; instrumentation
and configuration of the Hybrid MST to enable the evaluation plan to be implemented;
conducting experiments for each of the scenarios in the evaluation plan; and analysing the
results obtained from these experiments. The evaluation results and the patterns used in the
Hybrid MST may be documented using an architecture knowledge management tool also
developed at NICTA.

31

DSTO-TR-2204

9. References

[Ali-Babar & Gorton
2004]

[Ali-Babar et al. 2005]

[Allen et al. 2002]

[Bachmann et al. 2003]

[Barbacci et al. 1995]

[Bass et al. 2003]

[Basse/al. 2001]

[Bengstsson et al. 2004]

[Boehm&In 1996]

[CORBA 2006]

[Clements et al. 2001]

Ali-Babar, M. & Gorton, I. (2004) Comparison of Scenario-Based
Software Architecture Evaluation Methods, in the Proceedings of the 11th
Asia-Pacific Software Engineering Conference (ASPEC '04), pp. 600-7.

Ali-Babar, M, Wang, X. & Gorton, I. (2005) PAKME: A Tool for
Capturing and Using Architecture Design Knowledge, in the Proceedings
of the 9th International Multitopic Conference, pp. 1-6, IEEE.

Allen, R., Vestal, S., Cornhill, D. & Lewis, B. (2002) Using an
Architecture Description Language for Quantitative Analysis of Real-
Time Systems, in the Proceedings of the 3r International Workshop on
Software and Performance, Rome, Italy, pp. 203-10.

Bachmann, F., Bass, L. & Klein, M. (2003) Deriving Architectural
Tactics: A Step Toward Methodical Architectural Design, CMU/SEI-
2003-TR-004, Carnegie Mellon University Software Engineering
Institute, United States.

Barbacci, M., Klein, M., Longstaff, T. A. & Weinstock, C. B. (1995)
Quality Attributes, CMU/SEI-95-TR-021, Carnegie Mellon University
Software Engineering Institute, United States.

Bass, L., Clements, P. & Kazman, R. (2003) Software Architecture in
Practice, 2nd ed., Addison-Wesley Professional.

Bass, L., John, B. E. & Kates, J. (200\) Achieving Usability Through
Software Architecture, CMU/SEI-2001-TR-005, Carnegie Mellon
University Software Engineering Institute, United States.

Bengtsson, P., Lassing, N., Bosch, J. & Vliet, H. (2004) Architecture-
Level Modifiability Analysis (ALMA), Journal of Systems and Software,
69(1-2), pp. 129-47.

Boehm, B. & In., H. (1996) Identifying Quality-Requirement Conflicts,
IEEE Software, 13(2), pp. 25-35, IEEE Computer Society.

Overview of CORBA (CORBA) (2006) (accessed 13 July 2007),
http://wwwxs.wustl.edu/~schrnidt/corba-cwervicvv.html.

Clements, P., Kazman, R. & Klein, M. (2001) Evaluating Software
Architectures, Addison-Wesley Professional.

32

DSTO-TR-2204

[DMO 2004]

[DeMichiel & Keith 2006]

[DFW 2004]

[Dobrica & Niemela 2002]

[Foster et al. 2007]

[Gamma et al. 1995]

[Gorton et al. 2003]

[Henning & Vinoski 1999]

[Kanoune/a/. 1997]

[Kazman et al. 1994]

[Kazman et al. 2000]

Defence Materiel Organisation (DMO) (2004) Defence Electronic
Systems Sector Strategic Plan, Defence Publishing Service, Department
of Defence, Canberra, Australia.

DeMichiel, L. & Keith, M. (2006) Enterprise JavaBeans Version 3.0
(Specification), Sun Microsystems.

Directorate of Future Warfighting (DFW) (2004) Enabling Future
Warfighting: Network Centric Warfare, ADDP-D.3.1, Defence
Publishing Service, Department of Defence, Canberra, Australia.

Dobrica, L. & Niemela, E. (2002) A Survey on Software Architecture
Analysis Methods, IEEE Transactions on Software Engineering, 28(7),
pp. 638-53, IEEE.

Foster, K., Iannos, A., Lawrie, G., Temple, P. & Tobin, B. (2007)
Exploring Net Centric Architectures using the Net Warrior AEW&C
Node, DSTO-TR-XXXX (draft), Defence Science & Technology
Organisation, Edinburgh, Australia.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995) Design
Patterns: Elements of Reusable Object-Oriented Software, Addison
Wesley.

Gorton, I., Liu, A. & Brebner, P. (2003) Rigorous Evaluation of COTS
Middleware Technology, IEEE Computer, 36(3), pp. 50-5, IEEE
Computer Society.

Henning, M. & Vinoski, S. (1999) Advanced CORBA Programming with
C++, Addison-Wesley Professional.

Kanoun, K, Kaaniche, M. & Laprie, J.-P. (1997) Qualitative and
Quantitative Reliability Assessment, IEEE Software, 14(2), p 77-87,
IEEE Computer Society.

Kazman, R., Bass, L., Webb, M. & Abowd, G. (1994) SAAM: A Method
for Analyzing the Properties of Software Architectures, in the
Proceedings of the 16' International Conference on Software
Engineering, Sorrento, Italy, pp. 81-90.

Kazman, R., Carriere, S. J. & Woods, S. G. (2000) Toward a Discipline of
Scenario-Based Architectural Engineering, Annals of Software
Engineering, 9{\-A), pp. 5-33, Springer, Netherlands.

33

DSTO-TR-2204

[Kazmane/a/. 1998]

[Kontio 1996]

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H. &
Carriere, J. (1998) The Architecture Tradeoff Analysis Method, in the
Proceedings of the Fourth IEEE International Conference on Engineering
Complex Computer Systems (ICECCS'98), 10 to 14 August, pp. 68-78,
IEEE.

Kontio, J. (1996) A Case Study in Applying a Systematic Method for
COTS Selection, in the Proceedings of the ltf International Conference
on Software Engineering, 25 to 29 March, Berlin, Germany, pp. 201-9,
IEEE Computer Society.

[Lassing 1999] Lassing, N., Rijsenbrij, D. & Vliet, H. (1999) On Software Architecture
Analysis of Flexibility, Complexity of Changes: Size Isn't Everything, in
the Proceedings of the 2ndNordic Software Architecture Workshop
(NOSA'99).

[Lawlor & Vu 2003] Lawlor, B. & Vu, L. (2003) ,4 Survey of Techniques for Security
Architecture Analysis, DSTO-TR-1438, Defence Science & Technology
Organisation, Edinburgh, Australia.

[Lea 1999] Lea, D. (1999) Concurrent Programming Java: Design Principles and
Patterns, 2" ed., Addison-Wesley Professional.

[Liu & Gorton 2003] Liu, A. & Gorton, I. (2003) Accelerating COTS Middleware Acquisition:
The i-Mate Process, IEEE Software, 20(2), pp. 72-9, IEEE Computer
Society.

[MSDN 2007] Microsoft Developer Network (MSDN) (2007) .NETFramework 3.0
(accessed 16 July 2007),
http://msdn2.microsoft.com/en-us/netframework/defauIt.aspx.

[Nandagopal 2006] Nandagopal, N. (2006) Systems Integration Challenges for Defence,
Defence Magazine, October, pp. 26-7, Department of Defence, Canberra,
Australia.

[Nord & Tomayko 2006] Nord, R. L & Tomayko, J. E. (2006) Software Architecture-Centric
Methods and Agile Development, IEEE Software, 23(2), pp. 47-53, IEEE
Computer Society.

[OMG 2004] Object Management Group (OMG) (2004) Common Object Request
Broker Architecture: Core Specification Version 3, Object Management
Group.

34

DSTO-TR-2204

[Paravisini 2003]

[Schmidt et al. 2000]

[Smith et al. 2004]

[Szyperski 1998]

[Tang et al. 2004]

[Voelter et al. 2004]

[Wait 2006]

[Williams & Smith 2002]

[Wilcock et al. 2001]

Paravisini, B. (2003) The Complexity of Weapon Systems, Doctrine, 1,
pp. 40-2.

Schmidt, D., Stal, M., Rohnert, H. & Buschmann, F. (2000) Pattern-
Orientated Software Architecture: Patterns for Concurrent and Networked
Objects, vol. 2, Wiley.

Smith, J., Egglestone, G., Farr, P., Moon, T., Saunders, D., Shoubridge,
P., Thalassoudis, P. & Wallace, T. (2004) Technical Risk Assessment of
Australian Defence Projects, DSTO-TR-1656, Defence Systems Analysis
Division, Defence Science & Technology Organisation, Canberra,
Australia.

Szyperski, C. (1998) Component sq/hvare: Beyond Object-Oriented
Programming, Addison-Wesley.

Tang, D., Kumar, D., Duvur, S. & Torbjornsen, O. (2004) Availability
Measurement and Modeling for an Application Server, in the Proceedings
of the International Conference on Dependable Systems and Networks, 28
June to 1 July, pp. 669-78.

Voelter, M., Kircher, M. & Zdun, U. (2004) Remoting Patterns:
Foundations of Enterprise, Internet and Realtime Distributed Object
Middleware, Wiley.

Wait, P. (2006) Weapons Projects Misfire on Software, Government
Computer News, 3 July.

Williams, L. G. & Smith, C. U. (2002) PASA: A Method for the
Performance Assessment of Software Architectures, in the Proceedings of
the 3r International Workshop on Software and Performance, 24 to 26
July, Rome, Italy, pp. 179-89, ACM Press.

Wilcock, G., Totten, T., Gleave, A. & Wilson, R. (2001) The Application
of COTS Technology in Future Modular Avionic Systems, Electronics &
Communication Engineering Journal, pp. 183-92.

35

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)

2. TITLE

Developing an Evaluation Method for Middleware-Based Software
Architectures of Airborne Mission Systems

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

4. AUTHOR(S)

Kate Foster, Jenny Liu and Adam Iannos

5. CORPORATE AUTHOR

DSTO Defence Science and Technology Organisation

506 Lorimer St

Fishermans Bend Victoria 3207 Australia

6a. DSTO NUMBER
DSTO-TR-2204

6b. AR NUMBER
AR-014-310

6c. TYPE OF REPORT
Technical Report

7. DOCUMENT DATE
July 2007

8. FILE NUMBER
2008/1041870

9. TASK NUMBER
07/245

10. TASK SPONSOR
Long Range Research

11. NO. OF PAGES
36

12. NO. OF REFERENCES
41

13. URL on the World Wide Web

http://www.dsto.defence.gov.au/corporate/ reports/ DSTO-
TR-2204.pdf

14. RELEASE AUTHORITY

Chief, Air Operations Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes
18. DSTO RESEARCH LIBRARY THESAURUS http://web-vic.dsto.defence.gov.au/workareas/library/resources/dsto_thesaurus.shtml

middleware; airborne mission systems; software architecture; software evaluation

19. ABSTRACT
The Australian Defence Force (ADF) is acquiring airborne mission systems that incorporate component-based and distributed computing
systems. Such systems are built on middleware technologies. As DSTO is responsible for technically evaluating ADF acquisitions, one area of
research in the Air Operations Division is the evaluation of middleware-based software architectures. In order to conduct this research,
DSTO and NICTA have collaborated to extend NICTA's middleware evaluation method and apply it to the airborne mission systems
domain.

Page classification: UNCLASSIFIED

